93 research outputs found

    Human detection and tracking through temporal feature recognition

    Get PDF
    The ability to accurately track objects of interest – particularly humans – is of great importance in the fields of security and surveillance. In such scenarios, t he application of accurate, automated human tracking offers benefits over manual supervision. In this paper, recent efforts made to investigate the improvement of automated human detection and tracking techniques through the recognition of person-specific time-varying signatures in thermal video are detailed. A robust human detection algorithm is developed to aid the initialisation stage of a state-of-the art existing tracking algorithm. In addition, coupled with the spatial tracking methods present in this algorithm, the inclusion of temporal signature recognition in the tracking process is shown to improve human tracking results

    Impact of fast-converging PEVD algorithms on broadband AoA estimation

    Get PDF
    Polynomial matrix eigenvalue decomposition (PEVD) algorithms have been shown to enable a solution to the broadband angle of arrival (AoA) estimation problem. A parahermitian cross-spectral density (CSD) matrix can be generated from samples gathered by multiple array elements. The application of the PEVD to this CSD matrix leads to a paraunitary matrix which can be used within the spatio-spectral polynomial multiple signal classification (SSP-MUSIC) AoA estimation algorithm. Here, we demonstrate that the recent low-complexity divide-and-conquer sequential matrix diagonalisation (DC-SMD) algorithm, when paired with SSP-MUSIC, is able to provide superior AoA estimation versus traditional PEVD methods for the same algorithm execution time. We also provide results that quantify the performance trade-offs that DC-SMD offers for various algorithm parameters, and show that algorithm convergence speed can be increased at the expense of increased decomposition error and poorer AoA estimation performance

    Analysing the performance of divide-and-conquer sequential matrix diagonalisation for large broadband sensor arrays

    Get PDF
    A number of algorithms capable of iteratively calculating a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is an extension of the ordinary EVD to polynomial matrices and will diagonalise a parahermitian matrix using paraunitary operations. Inspired by recent work towards a low complexity divide-and-conquer PEVD algorithm, this paper analyses the performance of this algorithm - named divide-and-conquer sequential matrix diagonalisation (DC-SMD) - for applications involving broadband sensor arrays of various dimensionalities. We demonstrate that by using the DC-SMD algorithm instead of a traditional alternative, PEVD complexity and execution time can be significantly reduced. This reduction is shown to be especially impactful for broadband multichannel problems involving large arrays

    Divide-and-conquer sequential matrix diagonalisation for parahermitian matrices

    Get PDF
    A number of algorithms capable of iteratively calculating a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is a generalisation of the ordinary EVD and will diagonalise a parahermitian matrix via paraunitary operations. Inspired by the existence of low complexity divide-and-conquer solutions to eigenproblems, this paper addresses a divide-and-conquer approach to the PEVD utilising the sequential matrix diagonalisation (SMD) algorithm. We demonstrate that with the proposed techniques, encapsulated in a novel algorithm titled divide-and-conquer sequential matrix diagonalisation (DC-SMD), algorithm complexity can be significantly reduced. This reduction impacts on a number of broadband multichannel problems, including those involving large arrays

    Memory and complexity reduction in parahermitian matrix manipulations of PEVD algorithms

    Get PDF
    A number of algorithms for the iterative calculation of a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is a generalisation of the ordinary EVD and will diagonalise a parahermitian matrix via paraunitary operations. This paper addresses savings — both computationally and in terms of memory use — that exploit the parahermitian structure of the matrix being decomposed, and also suggests an implicit trimming approach to efficiently curb the polynomial order growth usually observed during iterations of the PEVD algorithms. We demonstrate that with the proposed techniques, both storage and computations can be significantly reduced, impacting on a number of broadband multichannel problems

    Complexity and search space reduction in cyclic-by-row PEVD algorithms

    Get PDF
    In recent years, several algorithms for the iterative calculation of a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is a generalisation of the ordinary EVD and uses paraunitary operations to diagonalise a parahermitian matrix. This paper addresses potential computational savings that can be applied to existing cyclic-by-row approaches for the PEVD. These savings are found during the search and rotation stages, and do not significantly impact on algorithm accuracy. We demonstrate that with the proposed techniques, computations can be significantly reduced. The benefits of this are important for a number of broadband multichannel problems

    Polynomial matrix formulation-based Capon beamformer

    Get PDF
    This paper demonstrates the ease with which broadband array problems can be generalised from their well-known, straightforward narrowband equivalents when using polynomial matrix formulations. This is here exemplified for the Capon beamformer, which presents a solution to the minimum variance distortionless response problem. Based on the space-time covariance matrix of the array and the definition of a broadband steering vector, we formulate a polynomial MVDR problem. Results from its solution in the polynomial matrix domain are presented

    Efficient implementation of iterative polynomial matrix EVD algorithms exploiting structural redundancy and parallelisation

    Get PDF
    A number of algorithms are capable of iteratively calculating a polynomial matrix eigenvalue decomposition (PEVD), which is a generalisation of the EVD and will diagonalise a parahermitian polynomial matrix via paraunitary operations. While offering promising results in various broadband array processing applications, the PEVD has seen limited deployment in hardware due to the high computational complexity of these algorithms. Akin to low complexity divide-and-conquer (DaC) solutions to eigenproblems, this paper addresses a partially parallelisable DaC approach to the PEVD. A novel algorithm titled parallel-sequential matrix diagonalisation exhibits significantly reduced algorithmic complexity and run-time when compared with existing iterative PEVD methods. The DaC approach, which is shown to be suitable for multi-core implementation, can improve eigenvalue resolution at the expense of decomposition mean squared error, and offers a trade-off between the approximation order and accuracy of the resulting paraunitary matrices
    • …
    corecore